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Abstract: Spectral unmixing designates techniques that allow to decompose measured spectra
into linear or non-linear combination of spectra of all targets (endmembers). This technique
was initially developed for satellite applications, but it is now also widely used in biomedical
applications. However, several drawbacks limit the use of these techniques with standard
optical devices like RGB cameras. The devices need to be calibrated and a a priori on the
observed scene is often necessary. We propose a new method for estimating endmembers and
their proportion automatically and without calibration of the acquisition device based on near
separable non-negative matrix factorization. This method estimates the endmembers on spectra
of absorbance changes presenting periodic events. This is very common in in vivo biomedical and
medical optical imaging where hemodynamics dominate the absorbance fluctuations. We applied
the method for identifying functional brain areas during neurosurgery using four different RGB
cameras (an industrial camera, a smartphone and two surgical microscopes). Results obtained with
the auto-calibration method were consistent with the intraoperative gold standards. Endmembers
estimated with the auto-calibration method were similar to the calibrated endmembers used in
the modified Beer-Lambert law. The similarity was particularly strong when both cardiac and
respiratory periodic events were considered. This work can allow a widespread use of spectral
imaging in the industrial or medical field.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Spectral unmixing is a technique that was initially developed for satellite imaging applications.
The spectrum recorded in satellite images is a sum of spectra of all targets collected by the
sensor. This implies that the measured spectra are defined as a mix of several constituent spectra
(or endmembers), weighted by their proportion in the pixel [1,2]. The mixing process can be
considered linear [3] or non-linear [4]. These models are used in remote sensing application
to characterize and discriminate materials on the Earth’s surface [4,5], but also to decompose
mixtures by spectral features [6,7].

Spectral unmixing is also used in biomedical applications, especially for in vivo optical imaging
[8–10]. The objective is to observe non-invasively biological tissues and help in understanding,
detect or track metabolic, functional or disease processes in the body. Sowa et al. evaluated
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the hemodynamic changes in the early post-burn period of skin by near infra-red reflectance
spectroscopy [11]. In this work, a calibrated spectrometer and a linear mixing model was used
to estimate the proportion of oxy- and deoxyhemoglobin by fitting measured absorbance to the
hemoglobin molar extinction spectra (endmembers). Berman et al. implemented an unmixing
method with hyperspectral images acquired on cervical tissue [12] to establish a library of
biologically interpretable endmembers. Alston et al. have established a linear spectral unmixing
model to evaluate the proportion of the two states of 5-ALA induced PpIX fluorescence spectra
[13] in low and high grade gliomas [14]. This work has improved fluorescence-guided glioma
resection by discriminating healthy tissue from tumor margins. Lu et al. proposed spectral
unmxing to decompose hyperspectral images collected on a head and neck cancer animal model
into oxy- and deoxygenated hemoglobin concentration maps [15]. The method is based on
non-negative matrix factorization and hemoglobin extinction molar spectra were used as initial
inputs. This method allows to estimate concentration maps of chromophores, but an initial a
priori on the chromophore spectral signature is required.

Non-invasive functional brain mapping is an imaging technique used to localize the functional
areas of the patient brain. This technique is used during brain tumor resection surgery to indicate
to the neurosurgeon the cortical tissues that should not be removed without cognitive impairment.
Functional magnetic resonance imaging (fMRI) [16] is the preoperative gold standard for the
identification of the patient brain functional areas. However, after patient craniotomy, a brain
shift invalidates the relevance of neuronavigation to intraoperatively localize the functional areas
of the patient brain [17]. In order to prevent any localization error, intraoperative MRI has
been suggested, but it complicates the surgery gesture, which makes it rarely used. During
neurosurgery, electrical brain stimulation [18] (EBS) is the gold standard, but this technique is
mainly limited by its low spatial resolution (≈ 5 mm [19]) and has the potential risk to trigger
epileptic seizures. This technique allows a robust and reliable detection of many functional areas,
but could be traumatic for the patient, by inhibiting certain cognitive functions such as speech for
example. EBS is also complicated to perform and requires a very strong expertise.

As a complement to EBS, optical imaging provides an ideal solution for intraoperative
functional brain mapping. The analysis of the light absorption allows to monitor the brain activity
(motor or sensory tasks for example) with quantification of the concentration changes in oxy-
(∆CHbO2 ) and deoxygenated hemoglobin (∆CHb) in brain cortex [20–28]. In a previous study, we
implemented a spectral unmixing method using an RGB camera to quantify hemodynamics in
patient brains: the differential form of the modified Beer-Lambert law [21]. This method extracts
∆CHbO2 and ∆CHb by unmixing the measured absorbance changes in a linear combination of
calibrated hemoblobin extinction spectra (endmembers). These endmembers were calculated
in two steps. First the hemoglobin extinction spectra were multiplied to the optical mean
path length of traveled photons, the light source spectra and the spectral sensitivities of the
camera. Then, we integrated this product over the spectral range of the camera detectors to
obtain the endmembers. This is the standard approach for identifying functional brain areas
using near-infrared spectroscopy devices [29–31]. In our previous studies, we also applied this
technique during neurosurgery [20–22].

Several drawbacks limit the use of spectral unmixing techniques with standard optical devices
like RGB cameras for intraoperative functional brain mapping. The devices must be calibrated,
sometimes in complex environments such as operating rooms. For some models such as the
modified Beer-Lambert law, a a priori on the observed scene is also necessary: the optical
properties of the tissue has to be known for estimating the optical mean path length of traveled
photons. Without considering these two aspects, quantification of concentrations or abundances
contains large estimation errors [32]. In this paper, we introduce a new method called auto-
calibration method for estimating endmembers and their proportion automatically and without
calibration of the acquisition device. Endmembers are estimated blindly using a near separable
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non-negative matrix factorization (NMF) [33]. In traditional approaches, periodic absorbance
variations due to heartbeat and respiration decrease the sensitivity to the desired contrast (for
example, the low-frequency modulation of light absorption linked to cortical activity [34]).
These variations are thus removed from the initial signal with a filtering operation [21,23].
Unlike traditional approaches, this method estimates the endmembers in spectral bands where
absorbance changes periodically before applying filtering. Indeed, the a priori on the physiological
characteristics of periodic fluctuations due to heartbeat and respiration is very robust compared
to that associated with brain activity. This makes it easy to remove their contribution using
linear filtering and it simplifies the optical model since it allows to estimate the endmembers
automatically based on the periodic temporal variations of their abundance. The algorithm used
for the estimation of the endmembers is fast (can run in real time) and robust to small noise levels.

The auto-calibration method was applied to RGB videos collected during neurosurgery for the
identification of functional brain areas. Four different setups were used in a clinical study that
included 12 patients and 16 acquisitions. RGB data were collected with a smartphone, surgical
microscopes or the experimental setup we used in our previous studies [20–22]. Functional
brain areas were identified with Statistical Parametric Mapping (SPM) technique [35–37] and
the biomarkers computed with the modified Beer-Lambert law and the auto-calibration method.
These identifications were compared to those obtained with electrical brain stimulation. We
show that identifications provided by auto-calibration method are consistent with those obtained
with the modified Beer-Lambert law and electrical brain stimulation. The results showed that
the endmembers estimated with the auto-calibration method were similar to the calibrated ones
used in the modified Beer-Lambert law. In particular, heartbeat-derived signals are suitable for
estimating oxygenated hemoglobin changes in tissue and respiration-related events are suitable
for estimating oxygenated and deoxygenated hemoglobin changes. The similarity was particularly
strong when both cardiac and respiratory periodic events were considered. However, the method
was put into default for high noise levels.

2. Material and methods

2.1. Linear spectral unmixing

2.1.1. Modified Beer Lambert law

Let us assume that the absorbance A can be expressed with modified Beer-Lambert law:

A(λ, t) = log10

(︃
I0(λ)

I(λ, t)

)︃
= µa(λ, t).L (µa, µs) + G(λ, t), (1)

where I is the transmitted intensity, I0, the input light intensity, µa and µs (in cm−1), the
absorption and scattering coefficients, respectively. G is an unknown geometry dependent factor
whose variations are not related to changes in µa (for example, tissue dessication in biomedical
applications). L(µa, µs) (in cm) is the optical path length of the traveled photons dependent
upon µa and µs [38]. Absorbance A can be seen to be a non-linear function of µa, the greatest
deviation from linearity occurring at low µa and high µs values [38]. In a lot of applications, it is
interesting to measure absorption changes. For this reason the differential form of the modified
Beer-Lambert law is generally computed:

∆A(λ, t) = log10

(︃
Iref(λ)

I(λ, t)

)︃
= µa(λ, t).L (µa, µs) − µ

ref
a (λ).L

(︂
µref

a , µref
s

)︂
+ ∆G(λ, t) (2)

where ref denotes a reference time period without perturbations of the targeted optical properties
in the medium linked with the physiologic contrast measured. Considering that ∆L(λ, t) =
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L (µa, µs) − L
(︁
µref

a , µref
s

)︁
and ∆µa(λ, t) = µa(λ, t) − µref

a , Eq. (2) can be written:

∆A(λ, t) = ∆µa(λ, t).L
(︂
µref

a , µref
s

)︂
+ µa(λ, t).∆L(λ, t) + ∆G(λ, t) (3)

Using the Beer law, changes in the absorption coefficient can be linked to the concentration
changes ∆C (in mol.L−1) of the chromophore within the medium:

∆µa(λ, t) =
N∑︂
n
ϵn(λ)∆Cn(t). (4)

ϵn is the molar extinction coefficient of chromophore n (in L.mol−1.cm−1) and N the number of
chromophore that compose the medium, that is usually unknown. Using a spectral acquisition
device having K spectral channels, Eq. (3) can be expressed by the following matrix system
[21,39]:⎡⎢⎢⎢⎢⎢⎢⎢⎣

∆A1(t)
...

∆AK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1,1 · · · E1,N

...
. . .

...

EK,1 · · · EK,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
∆C1(t)

...

∆CN(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
B1(t)

...

BK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∆G1(t)

...

∆GK(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5)

The elements of the matrices E, B and G have been calculated as follows:

Ei,n =

∫ λ2

λ1

ϵn(λ).Di(λ).S(λ).L
(︂
µ

ref
a , µref

s

)︂
.dλ

Bi(t) =
∫ λ2

λ1

Di(λ).S(λ).µa(λ, t).∆L(λ, t).dλ

∆Gi(t) =
∫ λ2

λ1

Di(λ).S(λ).∆G(λ, t).dλ

(6)

The spectral sensitivity of the detector i of the spectral acquisition device is represented by
Di(λ) and S(λ) is the normalized intensity spectrum of the light source. [λ1; λ2] is the wavelength
range collected by the spectral acquisition device.

In biomedical applications, especially for functional brain mapping, it is commonly assumed
that L does not vary with ∆µa and ∆µs (which is not strictly correct [38]). This implies that
matrix B in Eq. (5) is null. With this assumption we can write:

[∆A(t)] = [E] [∆C(t)] + [∆G(t)] (7)

In order to estimate ∆C values, elements of matrix E and ∆G need to be calculated. As cerebral
activity is related to slow events [23], it is common to apply a low-pass filtering on measured ∆A
to remove the physiological noises such as heart rate and breathing rate. The low-pass filtering
was operated in the Fourier domain with a Blackman window (Fc = 0.05 Hz) [20–22]. Elements
of matrix ∆G depend on the geometry. In functional brain mapping, these factors are mainly due
to tissue dessication [40] that are estimated with linear regression. Once matrix ∆G has been
removed from Eq. (7) by band-pass filtering, we obtain Eq. (8):

[∆A(t)] = [E] [∆C(t)] (8)

For the calculation of matrix E, we consider that the variations of absorbance due to the
changes of absorption are mainly due to two or three chromophores (N = 2 or N = 3 in Eq. (5)),
whereas these variations are in reality due to a very great unknown number of chromophores.
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In functional brain mapping studies, these chromophores are the oxy- and deoxygenated
hemoglobin (HbO2 and Hb), and sometimes, the oxidative state of cytochrome-c-oxidase (CCO)
is also considered [41]. The so-called calibration is performed for calculating the matrix E, see
Eq. (6). In this equation, the optical path length L

(︂
µ

ref
a , µref

s

)︂
need to be estimated, Monte Carlo

simulations [21] or the diffusion approximation [42,43] could be used for this purpose. Finally,
chromophores’ concentration changes are obtained by matrix inversion.

2.1.2. Auto-calibration method

The aim of the auto-calibration method is to estimate the matrix E (see Eq. (6)) in a space where
Eq. (8) is valid. The term “auto-calibration” refers to the estimation of the E matrix without any
prior knowledge (wavelength-dependent parameters L, D, S or ϵ , see Eq. (6)) and using only
measurements.

As we saw in section 1, the modified Beer-Lambert law is an approximate method based on
assumptions that are not strictly correct. The principle of the auto-calibration method is to find a
model that simplifies the expression of ∆A into two components (or sources) in a space where
Eq. (8) is valid. This space can be found by studying the frequencies of ∆A, for which ∆µa is
very low and ∆µs = 0cm−1. These conditions can be met if the concentration of chromophores
varies weakly and periodically over time. Under these conditions, matrix B in Eq. (5) is null
because ∆L(λ, t) ≈ 0cm. The factor ∆G in Eq. (5) may be approximated to 0 if it is evaluated in a
narrow and high frequency bandwidth and not linked to periodic event, which leads us to Eq. (8).

For functional brain mapping, this space could be related to heart rate (narrow frequency band
around 1 Hz) or breathing rate (narrow frequency band around 0.2 Hz) [44]. It is interesting to
note that ∆A fluctuations related to these physiological events are usually considered as noise
and are discarded with a low-pass filtering. Under normal conditions, hemoglobin is conducted
from the heart to the brain through arteries with each heartbeat. This hemoglobin is highly
oxygenated and is directly related to the oxygen supply to organs. Its normal saturation in oxygen
lie between 95% and 100% [45]. This supply of hemoglobin perfuses the brain tissue and thus
oxygenates the functional areas following neuronal activity. After perfusing the brain tissue,
blood is returning to the heart through the vein with an oxygen saturation greater than 75% [46].
As absorption changes induced by the heartbeat are only due to Hb and HbO2, heartbeat can
be roughly modeled as two periodic functions. In this space, it is valid to assume that only two
chromophores vary (N = 2 in Eq. (5)). It is acceptable to assume that there is no change in
µs since only concentrations of Hb and HbO2 are periodically varying. These changes in µs
are mainly induced by cell conformational changes and swelling [47] and are no larger than
0.4% [48] in the low frequency range. µa varies much less than in the case of cerebral activity
because the changes in blood flow and volume on the scale of the heartbeat or respiration are
only effects of elasticity of the vessels which are thus weakly significant compared to the effects
of the physiological cascade related to the cerebral hemodynamic response. Thus, in this space it
is valid to assume that the matrix B in Eq. (5) is null. Finally, since we focus on frequencies
higher than those related to the matrix ∆G, we can consider their elements as zero.

The auto-calibration method consists of several steps. First spectra of absorbance changes
signals were computed (magnitude of the Fourier transform). Negative frequencies of the spectra
were discarded and only frequencies centered on the periodic event were kept. This reduced
spectra corresponds to the matrix X in Eq. (9). Then, a near separable non-negative matrix
factorization (NMF) was computed to estimate the matrix E in Eq. (8). Non-negative matrix
factorization is a low rank approximation model in which an input matrix X is factorized into two
element-wise non-negative matrices W and H:

X = WH, (9)
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Algorithm 1 Rank−2 near separable NMF
Input:
Matrix X ∈ Rm×n

+ : ∆A spectra centered on periodic event
Integer k = 2: factorization rank
Integer P = 5: number of extreme points
Output:
Rank−k non-negative factor W ∈ Rm×k

+ : Estimation of matrix E, see Eq. (8)

1: ▷ Normalize X with L1 norm along the column of X
2: Xi = Xi/∥Xi∥1 ∀i ∈ [1, n]
3: ▷ Compute L2 norm along the column of X
4: normsi = ∥Xi∥2 ∀i ∈ [1, n]
5: ▷ Find the index of the largest norm in norms vector
6: idx0 = argmax(norms)
7: ▷ Get the column of X at idx0 position
8: W0 = X[:, idx0]
9: ▷ Compute L2 norm along the column of W0 − X

10: normsi = ∥W0 − Xi∥2 ∀i ∈ [1, n]
11: ▷ Sort the indexes of norm vector in ascending order. This corresponds to the columns of X

from most similar to most different from W0
12: idx0 = argsort(norms)
13: ▷ Only keep the first P indexes which corresponded to the P columns of X most similar to W0
14: idxbest = idx0[: P]
15: ▷ Get the first source. Average of the 5 columns of X most similar to W0
16: W0 = mean(X[:, idxbest])

17: ▷ Compute L2 norm along the column of W0 − X
18: normsi = ∥W0 − Xi∥2 ∀i ∈ [1, n]
19: ▷ Sort the indexes of norm vector in ascending order. This corresponds to the columns of X

from most similar to most different from W0
20: idx1 = argsort(norms)
21: ▷ Keep only the last P indices that correspond to the P columns of X most different from W0
22: idxbest = idx1[−P :]
23: ▷ Get the second source. Average of the p columns of X most different from W0
24: W1 = mean(X[:, idxbest])

25: ▷ Store the two sources W0 and W1 in an matrix W
26: W = array([W0, W1]).T

In Eq. (9), X, W and H have dimensions (m × n), (m × k) and (k × n), respectively. Integers
m and n are the number of rows and columns of X, respectively. The integer k is called the
factorization rank and verifies 1 ≤ k ≤ min(m, n). Separable NMF is a variant of NMF, solvable
in polynomial time with a robust algorithm [49].

Algorithm 1 can be used to solve separable NMF with factorization rank k = 2 [33]. Rank-2
separable NMF is a special case of separable NMF where a solution can be computed in closed
form. Indeed, the data points (matrix X) lie approximately on a segment which the two extreme
points are the two sources (matrix W). Finding one of these two extreme points is equivalent to
finding the data point with the largest norm (first source). In intraoperative optical imaging, data
are subject to acquisition noise. Thus, the extreme points may not be associated with sources but
with acquisition noise. Indeed, a large amount of noise may introduce outliers in data which
will distort the estimation of the sources. To overcome this drawback, we propose to find the
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sources by considering the mean value of the P extreme points, a method adapted from [50].
The periodic events that may be considered in the auto-calibration method are heartbeat and
respiratory. As hemodynamic changes, and especially changes in ∆CHbO2 are predominant for
frequencies related to these physiological events, the first source can be associated with EHbO2

and the second source with EHb (see Eq. (6)). The algorithm is not iterative and a solution is
computed in O(2m + 2n log2(n)), which is compatible with real-time processing.

We applied a few steps of a descent algorithm for non-negative factorization on X with an
initial guess W obtained with Algorithm 1. This allows to refine the estimation of the sources
by limiting the impact of the acquisition noise. For this purpose, we used the non-negative
factorization techniques toolbox in python nn-fac [51].

To compute slow fluctuations of sources W, ∆A signals were low-pass filtered (∆ALP of
frequencies F<0.05Hz [21]) to isolate the low-frequency modulation of light absorption linked to
cortical activity [23]. Finally, we used the ∆ALP signal to compute slow fluctuations of sources
∆Cauto (in arbitrary units):

∆Cauto = ∆ALPW+, (10)

with + the right pseudo-inverse operator.

2.2. Clinical application: intraoperative identification of functional brain areas during
brain tumor resection operations in human patients

We represented the flowchart of data analysis in Fig. 1. First acquisition and pre-processing steps
were executed. Once the RGB video was acquired, the brain repetitive motion was compensated,
data were filtered, and low-pass filtered absorbance changes were calculated.

To estimate the slow hemodynamic fluctuations due to cerebral activity, the modified Beer-
Lambert law and the auto-calibration method were applied in parallel, see section 3. The
modified Beer-Lambert law converted the low-pass filtered absorbance changes into quantitative
concentration changes of HbO2 and Hb, see section 1.

The auto-calibration method was applied to the unfiltered temporal intensity signal, averaged
over the surgical window, see section 2. This leads to the calculation of matrix W (estimate of
matrix E). The auto-calibration method converted the low-pass filtered absorbance changes into
semi-quantitative contrasts.

A general linear model was separately executed on quantitative an semi-quantitative contrasts
by testing the linear association between measurements and theoretical contrasts representing
the hemodynamic response following a physiological stimulus, see section 4. Finally, statistical
inferences (functional brain areas) were obtained with the random field theory or with the
automatic thresholding procedure.

2.2.1. Intraoperative procedure

The study was conducted at the neurological center of the Pierre Wertheimer hospital in Bron,
France. Twelve patients presenting a tumor close to the motor cortex area was included in the
study. The experiment was approved by the local ethics committee of Lyon University Hospital
(France) and the participating patients signed written consent.

After the patient’s craniotomy and before the brain tumor resection surgery, a video was
acquired with a wide field optical device, see Fig. 2(A). Four different devices were used
depending on the patient, see Table 1. In all cases, the devices were composed of an RGB
camera in conjunction with an a continuous wave white light source. The white light source
was illuminating the patient exposed cortex and the RGB camera was collecting the reflected
light. After data acquisition, videos were processed by a laptop (processor: Intel Core i5-7200U,
2.50GHz × 4, ram: 15.3GiB).

For all setups, videos were acquired with successive periods of rest and motor or sensory
stimulation that could be repeated over time. Motor cortex stimulation was performed by the
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Fig. 1. Flowchart of data analysis, including definitions of the variables used in this
manuscript. The flowchart was separated into four parts. First, data were acquired and
pre-processed. After video acquisition, motion in images was compensated, RGB reflectance
intensities Ik(p, t) measured at time t for the pixel p were filtered and converted into
absorbance changes ∆ALP

k (p, t) (k designate the color channel of the camera: red, green,
or blue). The second and third parts are the flowchart are the parallel execution of the
modified Beer-Lambert law and auto-calibration method. The modified Beer-Lambert law
used the matrix E to convert ∆ALP

k (p, t) into concentration changes ∆Cn(p, t), n designates
either HbO2 or Hb. The auto-calibration method was applied to the unfiltered temporal
intensity signal, averaged over the surgical window Ik(t). Spectra of absorbance changes
were calculated |TF(∆Ak)|, specific frequency bands were selected and separable NMF
was executed to calculate matrix W (estimate of E). The auto-calibration method used the
matrix W to convert ∆ALP

k (p, t) into concentration changes ∆Cauto
n (p, t), n designates the two

sources. The last part of the flowchart is the identification of functional brain areas using
statistical parametric brain mapping. A linear general modeling leads to the computation of
matrices β and Zstats for the contrast c (∆CHbO2 , ∆CHb, ∆Cauto

1 or ∆Cauto
2 ). β represents

the parameters of the general linear model that aims to compute the Zstats matrix. Finally,
this last matrix was thresholded with the random field theory or the automatic thresholding
procedure to identify the functional brain areas. We obtained the binary mask of statistical
inferences SPMc.

patient or by an external person by repetitive, alternating hand opening and closing at ≈ 1 Hz.
Stimulation of the sensory cortex was performed through repetitive fingers and palm caresses at
≈ 1 Hz. These caresses were performed by an external person. For each patient, different number
of stimulation cycles were performed. Information on patients and acquisitions is summarized
in Table 2. For patients 7 and 8, optical setups 2 and 3 acquired videos in the same time. For
patient 10, the 3 videos were acquired in a row.
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Fig. 2. A - Schematic of the experimental setup. B - Absorbance changes (∆A) spectra
measured by the optical device 1 (see Table 1) for patient 5 (see Table 2). The blue and
green areas highlight the frequencies related to heartbeat and respiratory, respectively. These
frequencies can be used as training data by the auto-calibration method. The red areas
highlight the frequencies related to cerebral activity (F ≤ 0.05 Hz).

Table 1. Intraoperative optical setups.

Hardware Setup 1 [20–22,52,53] Setup 2 Setup 3 Setup 4

Camera RGB BASLER
acA2000-165uc

Leica M530 OHX Iphone SE without camera
stand

Zeiss Opmi
Pentero 800

Frame rate (Hz) 30 60 30 30

Illumination 116W halogen bulb
(OSRAM Classic 230V)

400W xenon arc-lamp 400W xenon arc-lamp
(Setup 2 illumination)

300W xenon arc-lamp

Resolution 2040 × 1086 1280 × 720 1920 × 1080 720 × 480

Digitization 8 bits 8 bits 8 bits 8 bits

The neurosurgeon performed electrical brain stimulation (EBS) after RGB imaging using
a bipolar electrode (Nimbus Medtronic neurostimulator) to identify the functional brain areas
during the neurosurgery. A biphasic current was used (pulsating frequency: 60 Hz, pulse width:
1 ms). The current was first set to 1 mA, and increased to 6 mA. When a functional area was
identified by EBS, the neurosurgeon placed a colored pastille on the patient cortex and an RGB
image was acquired to store the position of the functional area in the RGB image.

2.2.2. Pre-processing

For each frame of the RGB video, the repetitive brain motion was compensated [54,55]. The
slow drift of RGB intensities was corrected due to tissue desiccation [40] and a low-pass filtering
was performed to isolate slow hemodynamic fluctuations. The low-pass filtering was operated
in the Fourier domain by multiplying the Fourier transform of each intensity time curve by a
Blackman window (cut-off frequency: 0.05 Hz, see the red rectangle in Fig. 2(B). Then, the
filtered time curves were obtained by inverse Fourier transform. Finally, absorbance changes
curves were computed for each color channel k with low-pass filtered intensity curves:

∆ALP
k (p, t) = log10

(︄
ILP,ref
k (p)
ILP
k (p, t)

)︄
, (11)

with ILP
k (t) the filtered reflectance intensity measured at time t by the camera color channel k (red,

green or blue). ILP,ref
k is the reference reflectance intensity measured by the camera color channel
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Table 2. Information on patients and acquisitions.

Patient Acquisition

ID Gender Age Surgery
type

ID Stimulation type Duration Duration of rest and
stimulation steps

Nb of
paradigm

Intraoperative
setup

1 M 29 Awake 1 Patient moved his
right hand

90s 30s-30s 1 Setup 1

2 M 57 General
anesthe-

sia

2 External person
moved patient’s left

hand

140s 20s-20s 3 Setup 1

3 F 45 Awake 3 Patient moved her left
hand

140s 20s-20s 3 Setup 1

4 F 60 Awake 4 Patient moved her left
hand

100s 20s-20s 2 Setup 1

5 F 37 Awake 5 Patient moved her left
hand

100s 20s-20s 2 Setup 1

6 F 41 Awake 6 Patient moved her
right hand

140s 20s-20s 3 Setup 2

7 M 49 Awake
7.a Patient moved his

right hand
140s 20s-20s 3

Setup 2

7.b Setup 3

8 M 27 Awake
8.a Patient moved his

right hand
140s 20s-20s 3

Setup 2

8.b Setup 3

9 F 33 Awake 9 Patient moved her
right hand

90s 30s-30s 1 Setup 1

10 F 36 Awake
10.a Patient moved her left

hand 90s 30s-30s 1 Setup 1
10.b External person

moved patient’s left
hand

10.c External person
caresses patient’s left

hand

11 F 70 Awake 11 Patient moved her
right hand

90s 30s-30s 1 Setup 4

12 M 35 Awake 12 Patient moved his left
hand

120s 30s-60s 1 Setup 4

k (average of the reflectance intensity over the duration of the first rest step of the experimental
paradigm, see section 1).

2.2.3. Modified Beer-Lambert law and auto-calibration method

Quantitative and semi-quantitative contrasts were computed with the modified Beer-Lambert law
(see section 1) and the auto-calibration method (see section 2), respectively.

Quantitative contrasts ∆CHbO2 and ∆CHb (in µmol.L−1) were computed for each camera
pixel with the modified Beer-Lambert law, see section 1. For the calculation of matrix E,
wavelength-dependent parameters L, D, S and ϵ need to be known, see Eq. (6). Values of the
optical mean path length L were taken from our previous studies [21,52]. The values of L and
the details regarding its estimation can be found in Ref. [21]. The molar extinction coefficients
ϵHbO2 and ϵHb of HbO2 and Hb were taken from Matcher et al. [56]. For the optical device 1 (see
table 1), the spectral sensitivities of the detector D were provided by the camera manufacturer
and the light source spectra S has been measured with a spectrometer. As we did not know the
spectral characteristics of the cameras and white light sources of devices 2, 3 and 4 (see Table 1),
the modified Beer-Lambert law could not be properly applied for videos 6, 7, 8.a, 8.b, 11 and 12,
see Table 2. For these videos, we used the matrix E (see Eq. (6)) computed for the optical device
1.
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Semi-quantitative contrasts ∆Cauto
1 and ∆Cauto

2 (in arbitrary units) were computed for each
camera pixel with the auto-calibration method, see section 2. The first step was to compute
unfiltered temporal intensity signal, averaged over the surgical window Ik(t), see Fig. 1. Then,
using this signal, absorbance changes were computed:

∆Ak(t) = log10

(︄
Iref
k

Ik(t)

)︄
, (12)

Spectra of absorbance changes |TF(∆Ak)| were calculated, specific frequency bands were
selected and separable NMF was executed, see section 2. This leads to the calculation of the
matrix W, which is an estimate of the matrix E. To calculate W, we only used measurements, no
prior knowledge were included into the model. Finally, low-pass filtered absorbance changes
∆ALP were converted into semi-quantitative contrasts ∆Cauto

1 and ∆Cauto
2 , see Eq. (10). As we

mentioned in section 2, ∆A fluctuations related to heartbeat and respiratory may be considered in
the auto-calibration method. Depending on the signal to noise ratio (SNR) of the acquisitions,
we chose frequencies related to heartbeat (0.95 Hz ≤ fH ≤ 1.05 Hz) and/or respiratory (0.15 Hz
≤ fH ≤ 0.25 Hz). Note that these frequency range may change depending on the patient. In the
rest of the manuscript, under- or superscripts H , R or H,R indicate that the auto-calibration method
was performed by taking into account heartbeat, respiratory or the concatenation of heartbeat and
respiratory frequencies, respectively. For the acquisitions where the two periodic events were
distinctly observable on the absorbance change spectra, the auto-calibration method was applied
three times. For these cases, we obtained matrices WH , WR and WH,R.

2.2.4. Statistical parametric functional brain mapping

To identify the functional brain areas from the computed contrasts, the statistical parametric
mapping (SPM) technique [36] was implemented. This technique was introduced by Karl
Friston to process fMRI data. This method was also adapted for functional near infrared
applications [37,57]. The basic idea was to test for each camera pixel the linear association
between measured contrasts and a theoretical contrast that describes the patient hemodynamic
response to a physiological stimulus. This theoretical contrast was obtained by convolving
the hemodynamic impulse response function [58] to the window function that represents the
patients physiological stimulus. A general linear model was implemented to evaluate the linear
association between measured and expected responses. This leads to the computation of a matrix
of Z statistics for the contrast c, indicated Zstat(c) in the rest of the manuscript.

The random field theory (RFT) [37,59,60] was used to to threshold the Zstat matrices at 5%
statistical significance level with a correction for multiple comparisons (family-wise error) at the
pixel level. In some cases, measured and expected hemodynamic responses did not correspond
because the actual hemodynamic impulse response in the patient’s tissue was different from
the one used in this paper. This leads to a lack of detection of functional brain areas due to
a too high threshold of the Zstat matrix using RFT. In these cases, functional brain areas were
identified as portions of patient’s brain where the Zstat>µ(Zstat) + 0.75σ(Zstat) [22], with µ and
σ the mean and standard deviation functions, respectively. The binary image obtained after
the thresholding operations is indicated SPMc in the rest of the paper. More details on the
computation of the functional brain maps Zstats and SPM can be found in our previous study [35]
and in Supplement 1.

Data were processed with our laptop (processor: Intel Core i5-7200U, 2.50GHz × 4, ram:
15.3GiB) with a C++ software developed with Qt (v5.15.8), OpenCV (v4.6.0) [61] and FFTW
(v3.3.10) [62]. For the 100 s video of patient 5, the brain motion was compensated in real
time (during data loading). Filtering operations were executed in 45 s after data loading. The
auto-calibration method was computed in real time, contrasts were calculated in 8 s and functional
maps were obtained in 8 s.

https://doi.org/10.6084/m9.figshare.23654241
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2.2.5. Evaluation metrics

For each acquisition, the matrices W (WH , WR or WH,R) computed with the auto-calibration
method (see sections 2 and 3) were compared to the matrix E (see section 1) with the normalized
cross covariance NCC:

NCC(E, W) =
s
∑︁

E.W −
∑︁

E
∑︁

W√︃(︂
s
∑︁

E2 − (
∑︁

E)2
)︂ (︂

s
∑︁

W2 − (
∑︁

W)2
)︂ , (13)

with s the number of elements of matrices E and W. NCC is a similarity metric that is used for
template matching [63] and has a range of [−1; 1]

We also used the NCC to compare the Zstats matrices computed with the modified Beer-Lambert
law with those obtained with the auto-calibration method. For each acquisition, we compared
Zstats(HbO2) to Zstats(C1) and Zstats(Hb) to Zstats(C2).

The DICE coefficient [64] was computed between the binary functional maps obtained with
MBLL (X in Eq. (14)) and the auto-calibration method (Y in Eq. (14)):

DICE(X, Y) =
2|X ∩ Y |
|X | + |Y |

, 0 ≤ DICE ≤ 1. (14)

Where |X | and |Y | are the cardinalities of the two binary sets.
Finally, we tested if the functional brain areas identified by electrical brain stimulation

corresponded to the identifications provided by optical functional maps by testing if the electrical
brain stimulation results were included in these maps.

3. Results

In Fig. 3, we represented maps of quantitative and semi-quantitative contrasts obtained for
patient 5 at time t = 40 s with the modified Beer-Lambert law and the auto-calibration method,
respectively. Maps (a) and (b) corresponded to ∆CHbO2 (t = 40s) and ∆CHb(t = 40s), respectively.
Maps (c) and (d) corresponded to ∆Cauto

1 (t = 40s) and ∆Cauto
2 (t = 40s), respectively. The white

dot and the letter M indicate the location of the patient’s motor area that has been identified
with the EBS. Temporal quantitative and semi-quantitative contrasts measured at the level of the
motor area are plotted at the right side of the figure. Temporal evolution of ∆CHbO2 and ∆CHb,
∆Cauto

1 and ∆Cauto
2 maps can be observed in Visualization 1.

In Fig. 4, we computed for each acquisition (see Table 2) the NCC (see Eq. (13)) between the
matrices E obtained with the modified Beer-Lambert law and matrices W calculated with the
auto-calibration method. NCC(E, WH), NCC(E, WR) and NCC(E, WH,R) values were represented
by blue, orange and green bars, respectively. For some acquisitions, no bars are shown. This
means that the calculation of WH , WR or WH,R matrices could not be performed, as frequencies
associated with heartbeat or respiratory were not visible in the training signal. For 3 out of 16
acquisitions, the heartbeat frequencies were not visible in the training signal. For 7 out of 16
acquisitions, respiratory event was not visible in te training signal. NCC values computed between
matrices E and WH were 0.66±0.12. Those computed between E and WR were 0.69±0.13. When
heartbeat and respiratory frequencies were visible in the training signal, NCC(E, WR) values were
9% greater than NCC(E, WH). NCC(E, WR) values were in the same order of magnitude than
NCC(E, WH,R) values (0.69 ± 0.15).

The functional brain identifications are represented in Figs. 5, 6 and 7. For each acquisition,
functional maps (Zstats matrices, see section 4) were plotted in colormap jet on the first image of
the video sequence. We plotted functional maps calculated with the modified Beer-Lambert law
(Zstats(HbO2) and Zstats(Hb)) and the auto-calibration method (Zstats(CH

1 ), Zstats(CH
2 ), Zstats(CR

1 ),
Zstats(CR

2 )). Functional brain areas identified by optical imaging with the random field theory

https://doi.org/10.6084/m9.figshare.23309468
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Fig. 3. Quantitative and semi-quantitative contrasts obtained for patient 5 at time t = 40 s
with the modified Beer-Lambert law and the auto-calibration method, respectively. Maps (a)
and (b) corresponded to ∆CHbO2 (t = 40s) and ∆CHb(t = 40s), respectively. Maps (c) and
(d) corresponded to ∆Cauto

1 (t = 40s) and ∆Cauto
2 (t = 40s), respectively. The white dot and

the letter M indicate the location of the patient’s motor area that has been identified with
the EBS. Temporal quantitative and semi-quantitative contrasts measured at the level of the
motor area are plotted at the right side of the figure. On these graphs, solid curves represent
quantitative or semi-quantitative contrasts, dashed black curves, the expected hemodyamic
response HR. The green vertical lines indicate the temporal index used to plot maps (a) to
(d), and the blue rectangles indicate periods of patient activity (hand movement).

Fig. 4. Normalized cross covariance computed for each acquisition between the matrices E
obtained with the modified Beer-Lambert law (see section 1) and matrices W calculated
with the auto-calibration method (see section 2).
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and the automatic thresholding procedure were indicated with black and magenta contours,
respectively. Those detected with EBS were indicated by white points and letters Mi,j and Si,j for
motor and sensory areas j of patient i.

We indicated the concordance between functional optics and electrical brain stimulation
in Table 3. When comparisons could not be performed, cells were filled with the character
“-” (heartbeat or respiratory frequencies not visible in the training signal). We checked if
identifications provided by EBS (white spots) were included in those detected by functional
optics (black and magenta contours), see Figs. 5, 6 and 7. If there was a match, the cell was filled
with a Yes, otherwise a No was indicated. Super-scripts ∗ and ∗∗ indicate that the functional brain
areas were identified with the automatic thresholding procedure and the random field theory,
respectively (see section 4).

In Figs. 8 and 9, we compared the functional brain optics maps computed with the modified
Beer-Lambert law with those obtained with the auto-calibration method. In both figures, blue,
orange and green bars represent values computed when considering frequencies related with
heartbeat, respiratory and the concatenation of heartbeat and respiratory frequencies. For some
acquisitions, no bars are shown. This means that the calculation of WH , WR or WH,R matrices
could not be performed, as frequencies associated with heartbeat or respiratory were not visible
in the training signal.

In Fig. 8, we computed for each acquisition the NCC (see Eq. (13)) between Zstats(HbO2) and
Zstats(C1) and Zstats(Hb) and Zstats(C2) (colormaps in Figs. 5, 6 and 7). NCC values computed
between matrices Zstats(HbO2) and Zstats(C1)were 0.69±0.30 (for heartbeat frequencies) and 0.69±
0.36 (for respiratory frequencies). Those computed between matrices Zstats(Hb) and Zstats(C2)were
0.37±0.41 (for heartbeat frequencies) and 0.66±0.40 (for respiratory frequencies). When heartbeat
and respiratory frequencies were visible in the training signal, NCC(Zstats(HbO2), Zstats(CH

1 ))
(0.79 ± 0.16) values were 8% greater than NCC(Zstats(HbO2), Zstats(CR

1 )) (0.73 ± 0.40) but were
5% lower than NCC(Zstats(HbO2), Zstats(CH,R

1 )) (0.83 ± 0.17). On the contrary, NCC(Zstats(Hb),
Zstats(CR

2 )) (0.65 ± 0.49) values were 49% greater than NCC(Zstats(Hb), Zstats(CH
2 )) (0.43 ± 0.42)

and were 12% greater than NCC(Zstats(Hb), Zstats(CH,R
2 )) (0.57 ± 0.47). Zstats(C1) maps were

more similar to Zstats(HbO2) when using the concatenation of frequencies related to heartbeat
and respiratory. Zstats(C2) maps were more similar to Zstats(Hb) when using the frequencies
associated with respiratory.

In Fig. 9, we computed for each acquisition the DICE coefficient (see Eq. (14)) between
SPMHbO2 and SPMC1 and SPMHb and SPMC2 (see black and magenta contours in Figs. 5, 6 and 7).
Bars without hatches represent DICE coefficients computed with functional brain areas obtained
with RFT. Hatched bars indicate that the automatic thresholding procedure was used to identify
the functional brain areas.

When RFT was used to identify functional brain areas (black contours in Figs. 5, 6 and 7), DICE
computed between SPMHbO2 and SPMC1 were 0.22±0.34 (for heartbeat frequencies) and 0.25±0.35
(for respiratory frequencies). Those computed between SPMHb and SPMC2 were 0.08 ± 0.19
(for heartbeat frequencies) and 0.27 ± 0.39 (for respiratory frequencies). When heartbeat and
respiratory frequencies were visible in the training signal, DICE(SPMHbO2 , SPMCR

1
) (0.30± 0.35)

values were 61% greater than DICE(SPMHbO2 , SPMCH
1
) (0.18 ± 0.39) but were 17% lower than

DICE(SPMHbO2 , SPMCH,R
1

) (0.36± 0.39). DICE(SPMHb, SPMCR
2
) values (0.38± 0.41) were 121%

greater than DICE(SPMHb, SPMCH
2
) (0.17 ± 0.24) and 22% greater than DICE(SPMHb, SPMCH

2
)

(0.31 ± 0.33).
When the automatic thresholding procedure was used to identify functional brain areas (magenta

contours in Figs. 5, 6 and 7), DICE computed between SPMHbO2 and SPMC1 were 0.51± 0.35 (for
heartbeat frequencies) and 0.55 ± 0.35 (for respiratory frequencies). Those computed between
SPMHb and SPMC2 were 0.35 ± 0.35 (for heartbeat frequencies) and 0.60 ± 0.32 (for respiratory
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Fig. 5. Functional brain identifications provided by optics and EBS for acquisitions from 1
to 6.
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Fig. 6. Functional brain identifications provided by optics and EBS for acquisitions from 7
to 10.a.
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Fig. 7. Functional brain identifications provided by optics and EBS for acquisitions from
10.b to 12.

frequencies). When heartbeat and respiratory frequencies were visible in the training signal,
DICE(SPMHbO2 , SPMCR

1
) (0.62 ± 0.35) values were 8% greater than DICE(SPMHbO2 , SPMCH

1
)

(0.57±0.32) and were in the same order of magnitude than DICE(SPMHbO2 , SPMCH,R
1

) (0.62±0.36).
DICE(SPMHb, SPMCR

2
) (0.60 ± 0.33) values were 26% greater than DICE(SPMHb, SPMCH

2
)

(0.47 ± 0.27) and were 4% greater than DICE(SPMHb, SPMCH,R
2

) (0.57 ± 0.31).
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Table 3. Concordance between functional identifications provided by intraoperative
functional brain mapping techniques. A match between functional optics and EBS is

indicated by Yes∗∗ (identification with the random field theory) or Yes∗ (identification with
the automatic thresholding procedure).

Patient ID Video ID Area
Concordance between functional optics and EBS

SPMHbO2 SPMHb SPMH
C1

SPMH
C2

SPMR
C1

SPMR
C2

SPMH,R
C1

SPMH,R
C2

1 1

M1,1 Yes ∗ Yes ∗ No No - - - -

M1,2 Yes ∗ Yes ∗ No No - - - -

M1,3 Yes ∗ Yes ∗ No No - - - -

S1,1 Yes ∗ Yes ∗ No No - - - -

S1,2 Yes ∗ Yes ∗ No No - - - -

2 2 M2,1 Yes ∗ No No No No No No No

3 3 M3,1 No No No No - - - -

4 4 M4,1 No No No No - - - -

5 5 M5,1 Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗ No Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗

6 6

M6,1 Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗

S6,1 Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗

S6,2 Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ No Yes ∗,∗∗ Yes ∗∗> Yes ∗,∗∗ No

S6,3 No Yes ∗∗> No Yes ∗,∗∗ No Yes ∗∗> No Yes ∗

7
7.a M7,1 No No No No - - - -

7.b M7,1 No No No No - - - -

8

8.a
M8,1 Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ - - - -

M8,2 Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗ - - - -

8.b
M8,1 Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗,∗∗ Yes ∗ - - - -

M8,2 No Yes ∗ No Yes ∗ - - - -

9 9

M9,1 Yes ∗ Yes ∗ No No No No No No

M9,2 Yes ∗ Yes ∗ No No No No No No

M9,3 No No No No No No No No

S9,1 Yes ∗ Yes ∗ No No Yes ∗ No No No

10

10.a

M10,1 Yes ∗ Yes ∗ - - Yes ∗ No - -

S10,1 Yes ∗ Yes ∗ - - Yes ∗ Yes ∗ - -

S10,2 Yes ∗ Yes ∗ - - Yes ∗ Yes ∗ - -

S10,3 Yes ∗ Yes ∗ - - No Yes ∗ - -

10.b

M10,1 Yes ∗ Yes ∗ - - No No - -

S10,1 Yes ∗ Yes ∗ - - No No - -

S10,2 No No - - No No - -

S10,3 Yes ∗ Yes ∗ - - Yes ∗ Yes ∗ - -

10.c

M10,1 No No - - No No - -

S10,1 Yes ∗ Yes ∗ - - No No - -

S10,2 Yes ∗ Yes ∗ - - No No - -

S10,3 No No - - No No - -

11 11 M11,1 Yes ∗,∗∗ Yes ∗ Yes ∗ Yes ∗ Yes ∗,∗∗ Yes ∗ Yes ∗,∗∗ Yes ∗

12 12 M12,1 Yes ∗ Yes ∗ Yes ∗ Yes ∗ Yes ∗ Yes ∗ Yes ∗ Yes ∗

SPMC1 maps were more similar to SPMHbO2 maps when using the concatenation of frequencies
related to heartbeat and respiratory rather than just one of these frequency bands. SPMC2 maps
were more similar to SPMHb when using respiratory frequencies rather than heartbeat or the
concatenation of heartbeat and respiratory frequencies.
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Fig. 8. Comparison between Zstats matrices obtained with the modified Beer-Lambert law
and the auto-calibration method, see colormaps in Figs. 5, 6 and 7.

Fig. 9. Comparison between functional brain areas identified by the modified Beer-Lambert
law and the auto-calibration method, see black and magenta contours in Figs. 5, 6 and 7.
Bars without hatches represent DICE coefficients computed with functional brain areas
obtained with RFT. Hatched bars indicate that the automatic thresholding procedure was
used to identify the functional brain areas.

4. Discussion

The auto-calibration method we proposed is based on the training of absorbance changes due
to a spectral dependent periodic event. Using a spectral imaging device, our method allows to
estimate endmembers in spectral bands where absorbance changes periodically. This technique
has several advantages compared to traditional spectroscopic analyses used in diffuse optics,
see section 1. First, the auto-calibration method does not require a complex calibration of the
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imaging setup. For instance, spectral sensitivities of the acquisition device and the light source
do not need to be calibrated or even known. Then, the auto-calibration method does not require
an estimation of the scattering and absorption properties of the media. We show that this method
could be used with data collected from industrial RGB cameras or even smartphones.

The auto-calibration method is a fast and reliable algorithm. Two sources could be retrieved
that are directly taken from the data. This allows an easy interpretation of the estimated spectra.
In contrast, the estimated sources may not be the right ones, in case there are no columns of
X containing W, see Eq. (9). We applied the auto-calibration method for the identification of
functional brain areas on 16 acquisitions and saw that this method was capable of identifying
functional brain areas, see Figs. 5, 6 and 7 and Table 3.

Although frequencies related to respiratory were not always present in the training signal, these
frequencies seem to be particularly suitable for the auto-calibration method. Indeed, we saw in
Fig. 4 that matrices W were more similar to E matrices when using the frequencies associated
with respiratory (FR) (or the concatenation of heartbeat and respiratory related frequencies
FH,R) rather than those related to heartbeat (FH). The NCC metric was only computed on 3 × 2
matrices, which could certainly bias the result. A better comparison between E and W matrices
could be operated with data collected by hyperspectral imaging [43,65]. This will allow us to
acquire images with a higher spectral resolution and thus to compare the E and W matrices
more efficiently. We also saw on Fig. 9 that functional brain areas identified the auto-calibration
method were more similar to those obtained with the modified Beer-Lambert law when using
FR and FH,R rather than only FH . It is also interesting to notice that ∆CHbO2 contrasts seem to
be more easily estimated with FH,R or FH while FR seem to be preferred for estimating ∆CHb
contrasts, see Fig. 8.

In a previous study [35], we show that ∆CHb contrasts are more suitable for detecting functional
brain areas than ∆CHbO2 . Indeed, ∆CHbO2 measurements are more subject to physiological
noises, which does not allow, after filtering, to perfectly recover the hemodynamic response
induced by neuronal activity. Since respiratory rate seems to be preferred for estimating ∆CHb
contrasts, better functional identification is also obtained with these rates than with those related
to heartbeat.

We can use the pulse oxymetry litterature to explain the relationship between semi-quantitative
contrasts measured with the auto-calibration method (∆Cauto

1 and∆Cauto
2 ) and those measured with

the modified Beer-Lambert law (∆CHbO2 and ∆CHb). We also used this literature to discuss the
choice of frequency bands used in the auto-calibration method (heartbeat- or respiration-centered
frequencies) for estimating hemodynamic contrasts (∆CHbO2 and ∆CHb). In pulse oxymetry
applications, tissue oxygen saturation (StO2) is measured by assessing arterial and local venous
saturation values, denoted SaO2 and SvO2 , respectively [66–68]. SaO2 provides an indication about
the ventilation and the oxygen exchange in the lungs and SvO2 is a parameter that reflects the local
balance between blood flow and oxygen consumption [67]. Near-infrared light has large depth
penetration depth inside tissues (≈ 15mm at 793 nm [69]), which implies that the arterial, venous,
and capillary compartments all contribute to the measured optical signal. On the contrary, light
collected by RGB cameras has lower penetration depth than near-infrared light (≈ 1mm at 532
nm [69]) and contribution of arterial, venous, and capillary compartments can be more easily
separated in the optical signal.

It has been shown that the contribution of the arterial compartment to absorbance measurements
can be isolated [70]. Absorption changes in arteries are associated with the systolic-diastolic
blood pressure variation at the heartbeat frequency [71]. This arterial blood is highly oxygenated,
its normal saturation in oxygen lie between 95% and 100% [45]. Thus, after applying the
auto-calibration method on heartbeat frequencies, it is possible to estimate a source related to
HbO2 since changes in CHbO2 are predominant in this signal. Furthermore, changes in CHbO2

and CHb due to heartbeat can be considered as co-linear fluctuations since these variations are
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induced by a change in blood pressure. Thus, using frequencies related to heartbeat with near
separable NMF, it is not possible to also have a good estimate of a second source related to Hb.

Wolf et al. [72] formulated the hypothesis that hemoglobin oscillation at the respiratory rate
are mostly representative in veins. The compliance of the blood vessels, or the capacity of vessels
to respond to an increase of blood pressure by distending and increasing its blood volume, is
≈ 20 larger in veins than in arteries [67]. This means that for a given blood pressure, changes
in blood volume will be ≈ 20 times larger in veins than in arteries. Breathing is a mechanism
that facilitates the return of blood from the brain back to the heart. This is also known as
respiratory pump, and provoke hemoglobin oscillations at the respiratory frequency, with an
increase and decrease of blood volume during inspiration and expiration, respectively. Since
blood in veins return back to the heart, a change in SvO2 means a change in the use of oxygenated
blood by the tissues [73]. Thus, changes in CHbO2 and CHb may not be considered as co-linear
fluctuations. For these reasons, the auto-calibration method may be more efficient to estimate
oxy- and deoxygenated hemoglobin sources using the respiratory frequency. Thus W matrices
were more similar to E matrices when using with respiratory rather than heartbeat frequencies.
This may also explain the fact that the functional brain areas identified by the auto-calibration
method are more similar to those obtained with the modified Beer-Lambert law when using
frequencies associated with respiration rather than heart rate.

We plan to explore these hemodynamic oscillations in more detail in a future study. The
dynamic model proposed by Sergio Fantini [74] can be used to simulate the temporal evolution
of the concentration and oxygen saturation of hemoglobin in tissue with the considering time-
dependent hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen
consumption. Using this model, a second step could be to incorporate the changes in concentration
and oxygen saturation of hemoglobin in a 3D numerical brain phantom [32] to estimate radiative
quantities. Then, the auto-calibration method can be applied on the simulated optical signal to
study in more detail the estimation of hemodynamic sources. We also plan to develop a liquid
phantom, mimicking both the slow hemodynamic variations associated with brain activity and
the periodic hemodynamic variations associated with heartbeat or breathing. The numerical and
the liquid phantoms could be used to validate our method.

For 8 acquisitions out of 16 (videos 5, 6, 8.a, 8.b, 10.a, 10.b, 11 and 12), identifications obtained
by the auto-calibration method were consistent with those provided by EBS (intraoperative gold
standard). These videos have been acquired with four different optical setups: two neurosurgical
microscopes, a smartphone and the experimental setup we used in our previous studies, see
Table 1. For the remaining videos, the method may have been biased due to an important amount
of noise in the training signal. The signal to noise ratio (SNR) was in average 2.4 for videos
with correct functional identifications and 1.5 for videos with inconclusive identifications. The
SNR was defined as the ratio between the standard deviation of the training signal computed
over the heartbeat and/or respiratory frequency range and the standard deviation calculated over
the frequency range which were not related to physiological events. A high level of noise in the
training signal has a direct impact on the quality of the source estimation since Algorithm 1 finds
directly the sources in data, estimated sources did not correspond to hemodynamic sources but to
noise. Moreover, a large amount of noise may introduce outliers in data which will distort the
estimation of the sources, which did not allow to identify functional brain areas.

To illustrate, the influence of noise on the estimation of the hemodynamic sources, we plotted
the influence of the number of extreme points P used in Algorithm 1 for estimating the matrix E
in the video 2, see Fig. 10. Frequencies related with heartbeat FH were used to plot the blue curve,
those related with respiratory FH to plot the orange curve and the concatenation of heartbeat and
respiratory related frequencies (FH,R) to plot the green curve. This explains the difference in
length between the three curves. With FH and FH,R, thee NCC values increased strongly on the
interval P ∈ [1; 5], then increase slightly until P = Card(FH) and P = Card(FH,R), respectively.
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The learning signal seems to be particularly subject to the noise. The use of a number of extreme
points P ≥ 5 aims to increase the quality of the source estimation by reducing the noise impact.
Since the variations in heartbeat signal are mainly due to ∆CHbO2 , the use of a greater number of
extreme points leads to a better estimation of HbO2 source. For FR, the NCC values oscillate
between 0.65. The number of extreme points has a low impact on the source estimation, since a
low noise level is observed for these frequencies.

Fig. 10. Influence of the number of extreme points P used in Algorithm 1 for estimating
the matrix E in the video 2. The vertical red dotted line indicate the value of P = 5 used in
the manuscript.

For those videos with inconclusive identifications, 75% (videos 1 to 4, 9 and 10.c) of the
acquisitions were done by our experimental setup and 12.5% (video 7) by a Leica microscope
and 12.5% with a smartphone. The important noise amount in the collected signal is due to a
poor SNR which could be due to multiple reasons. Making acquisitions in the operating room
is often complex. The space is limited, and sometimes, it is complex to correctly place the
acquisition system at an optimal distance and orientation from the patient’s brain. In many cases,
the acquisition device must be moved as far back as possible from the patient, which limits the
amount of light captured by the sensor and therefore deteriorates the SNR. The adjustments of
the device must also be done quickly in order to minimize the duration of the procedure and the
discomfort for the patient.

In order to make the method more robust, several improvements can be implemented. We
plan to increase SNR in videos acquired with our experimental setup by connecting the camera
to a side-port of the neurosurgical microscope, as proposed in the work of Pichette et al. [43].
Pre-processing steps can be implemented to maximise the heartbeat signal. For example, we can
adapt work of Poh et al. who used independent component analysis to measure cardiac pulse beat
[75]. In this application, a single training signal was used to retrieve the hemodynamic sources
since intensity time curves were averaged over the brain surface. Thus, the heterogeneity of the
tissue optical properties were not taken into consideration. Similarly, if a phase shift of heartbeat
and respiratory signals are observed at different locations in the cerebral cortex, the average of the
time signals could reduce or mask the frequency peaks in the training signal. A solution would be
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to use a tensor decomposition approach to estimate sources for each pixel independently [76–79].
In this case, the tensor would be an array of dimension 3 (frequency, wavelength, pixel location).

The modified Beer-Lambert law has been applied on all videos, even for acquisitions with
unknown spectral characteristics (videos 6, 7.a, 7.b, 8.a, 8.b, 11 and 12). 12 out of 16
identifications were consistent with EBS. For the remaining 4 (videos 3, 4, 7.a and 7.b), the
modified Beer-Lambert coupled with SPM was not able to identify the functional brain areas.
Measured hemodynamic responses did not correspond to theoretical responses, since low Zstats
values were computed. These theoretical response functions are patient dependent and differ
depending on the type of cortical tissue [80]. Moreover, the neurovascular system evolves with
age, which implies a change in hemodynamic response [58] and the progression of gliomas over
time implies a change in the hemodynamic response [81].

5. Conclusion

In conclusion, we proposed a new linear spectral unmixing method based on near separable NMF
for the estimation of constituent spectra (sources) as well as their proportion in measurements:
the auto-calibration method. This approach takes advantage of the periodic temporal variations
of the sources in order to estimate them automatically and without device calibration. We
applied the method for identifying functional brain areas during neurosurgery using RGB cameras
(neurosurgical microscopes, industrial camera and smartphone). We have shown that the method
can be used with industrial RGB cameras, but that it must be used under certain conditions. Data
must be collected with high SNR and frequencies used by the training signal must be centered
on the periodic event. Functional identification obtained with the auto-calibration method were
consistent with those provided by the intraoperative gold standards. This work can allow a
widespread use of spectral imaging in the industrial or medical field. With for example, the
use of camera smartphones in telemedicine applications in order to help patients and doctors to
carry out a continuous functional follow-up or a diagnostic help. The auto-calibration method
could be applied during cardiac surgery to assess myocardial perfusion. It could also be used to
monitor tissue reperfusion after heart, kidney or skin transplantation, or to monitor the patency
of a vascular anastomosis (e.g. an intra-extra-cranial anastomosis). This work could also have
an impact on the development of low-cost imaging devices for widespread use in developing
countries.
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